Improving the Protein Value of Alfalfa-Based Diets

World Dairy Exp October 4, 2003

Glen Broderick
U.S. Dairy Forage Research Center
Madison, Wisconsin

Strategies to Improve Protein Utilization

- 1. Accurate Tracking of Dietary CP; Feed Less.
- 2. Reduce NPN in Hay-Crop Silage.
- 3. Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?).
- 6. Match Fermentable Energy & RDP.
- 7. Feed By-Pass Protein & Protected AA.
- 8. Use "N-Free" Essential AA (MHA?).

Approaches to Improving Protein Utilization

- 1. Accurate Tracking of Dietary CP; Feed Less.
- Reduce NPN in Hay-Crop Silage.
- 3. Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?)
- 6. Match Fermentable Energy & RDP.
- 7. Feed By-Pass Protein & Protected AA.
- 8. Use 'N-Free' Essential AA (MHA?).

Relationship of CP Intake & MUN (GAB53)

Not All MUN Testing is Equal (GAB53)

Effect of Diet on Milk Yield

Approaches to Improving Protein Utilization

- 1. Accurate Tracking of Dietary CP; Feed Less.
- 2. Reduce NPN in Hay-Crop Silage.
- 3. Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?).
- 6. Match Fermentable Energy & RDP.
- 7. Feed By-Pass Protein & Protected AA.
- 8. Use 'N-Free' Essential AA (MHA?).

Composition of Alfalfa Silages from 43 Commercial Dairy Farms (Luchini et al., 1997)

Item	Bunker	O ₂ -limiting	Tower
Dry Matter, %	36.8	54.0	49.6
NDF, % of DM	45.8	41.5	41.8
Crude Protein, % of DM	19.4	20.7	19.7
ADIN, % of total N	9.7	6.7	6.8
NPN, % of total N	62.3	55.4	55.0

Reducing NPN in Alfalfa Silage Decreases Rumen Ammonia & Improves Yield (Nagel & Broderick, 1992)

Red Clover Feeding Studies

Average Composition of Alfalfa & Red Clover Diets (5 Lactation Trials)

Silage Source

Item	Alfalfa	Red clover
Silage Composition		
Crude protein, % of DM	21.2	17.9
NPN, % of total CP	53	35
<u>Diet</u>	(%	of DM)
Alfalfa silage	60	• • •
Red clover silage	• • •	60
High moisture ear corn	36	36
Soybean meal	3	3
Diet Composition		
Crude protein	17.9	15.2
NDF	32	33
<u>USDFRC</u>		

Average Production on Alfalfa or Red Clover Silage (5 Lactation Trials)

Sil	lage	Sou	ırce

Item	Alfalfa	Red Clover	Prob.
Intake, lbs DM/d	48.3	45.6	< 0.01
Weight gain, lbs/d	0.04	0.42	<u>0.08</u>
Milk, lbs/d	70.3	69.0	0.37
Fat, lbs/d	2.47	2.38	<u>0.11</u>
Protein, lbs/d	2.05	2.03	0.42
Milk N/N-Intake, %	24	28	< 0.01
DM digestibility, %	61.6	66.4	< 0.01
<u>USDFRC</u>			

Red Clover Problems:

- 1. Lower Yields ~85-90% of Alfalfa.
- 2. Poorer Persistency (Dies out 1-2 years Soone than Alfalfa).
- 3. Lower DM Intakes.
- 4. There May be a Milk Component Problem.

Approaches to Improving Protein Utilization

- 1. Accurate Tracking of Dietary CP; Feed Less.
- 2. Reduce NPN in Hay-Crop Silage.
- 3. Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?)
- 6. Match Fermentable Energy & RDP.
- 7. Feed By-Pass Protein & Protected AA.
- 8. Use 'N-Free' Essential AA (MHA?).

Harvest Alfalfa as Hay or Silage?

टेड

Mean Composition of Alfalfa Silage & Hay

Item	Silage	Hay	Change, %
		0.5	77//
DM, %	41	86	N/A
CP, % DM	20.6	18.1	-12
NPN, % CP	51.9	8.0	-85
NDF, % DM	38	38	NS
NEL, Mcal/kg DM	1.51	1.50	NS
Ash, % DM	10.4	9.8	-6

Fish Meal (FM) Supplementation of Diets with 50% Alfalfa Silage or Hay (Vagnoni & Broderick, 1997)

Approaches to Improving Protein Utilization

- 1. Accurate Tracking of Dietary CP; Feed Less.
- 2. Reduce NPN in Hay-Crop Silage.
- 3. Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?).
- 6. Match Fermentable Energy & RDP.
- 7. Feed By-Pass Protein & Protected AA.
- 8. Use 'N-Free' Essential AA (MHA?).

Replacing Alfalfa Silage with Corn Silage (Dhiman & Satter, 1998)

Forage Source

	Forage Source				
Item	AS	2/3 AS:1/3 CS	1/3 AS:2/3 CS		
Composition (% of DN	<u>1)</u>				
Alfalfa Silage	50	33	17		
Corn Silage	0	17	33		
Conc. Mix	50	50	50		
Crude Protein	18.6	17.5	16.6		
Production (kg/305 d)					
Milk (Multiparous)	21,100 ^b	22,400 ^a	22,090ab		
Rumen NH ₃ (mM)	12.3 ^a	10.5 ^b	9.4°		
		$^{a,b,c}(P < 0.05)$			
ICDEDC					

Approaches to Improving Protein Utilization

- 1. Accurate Tracking of Dietary CP; Feed Less.
- 2. Reduce NPN in Hay-Crop Silage.
- 3. Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?).
- 6. Match Fermentable Energy & RDP.
- 7. Feed By-Pass Protein & Protected AA.
- 8. Use 'N-Free' Essential AA (MHA?).

Even Norwegian Farmers say "Feed more Grain!"

Effect of Replacing Alfalfa Silage with Concentrate (Valadares et al., 2000)

Forage Helps Maintain Rumen pH & Milk Fat

Approaches to Improving Protein Utilization

- 1. Accurate Tracking of Dietary CP; Feed Less.
- 2. Reduce NPN in Hay-Crop Silage.
- 3. Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?).
- 6. Match Fermentable Energy with RDP.
- 7. Feed By-Pass Protein & Protected AA.
- 8. Use 'N-Free' Essential AA (MHA?).

Effect of Processing on Digestibility of Corn & Barley Starch (Owens et al., 1986)

Proportion of Starch Digestion, %

Processing Method	Rumen	Small Intestine	Large Intestine	Total tract
Cracked Corn	69	13	8	89
Ground Corn	78	14	4	94
Steam-Flaked Corn	83	16	1	98
High Moisture Cori	n 86	6	1	95
Ground Barley	94	•••	•••	

Rumen Ammonia & Production of Cows fed Alfalfa Silage & Ground HMEC (Ekinci & Broderick, 1997)

USDFRC

Feeding Sugar as Energy

In 3 Trials, Similar Results were obtained by Replacing Corn Starch with:

Table Sugar
Dried Molasses
Liquid Molasses

Feeding Sugar with Alfalfa Silage

- 1. Replacing Dietary Starch with Sugar Increase Intake, OM Digestibility & Fat Yield.
- 2. Reduced Rumen Ammonia.
- 3. Small Effects on Milk & Protein Yield.

Approaches to Reducing Dietary CP

- 1. Accurate Tracking of Dietary CP; Feed Less.
- 2. Reduce NPN in Hay-Crop Silage.
- Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?).
- 6. Match Fermentable Energy & RDP.
- 7. Feed By-Pass Protein & Protected AA.
- 8. Use 'N-Free' Essential AA (MHA?).

Supplementation of a 50% Alfalfa Silage Diet with Raw or Roasted Soybeans (Faldet & Satter, 1991)

USDFRC

Rumen In Vitro Bypass & Cow Response of Slowly Degraded Proteins in Cows Fed Alfalfa Silage

	Relative Response (Solvent SBM = 1)		
Test Protein	In Vitro Bypass		
Expeller SBM	1.8	Rumen Escape	1.6 (1)
		Protein Efficiency	1.5 (3)
Fish Meal			
Low-Bypass	1.7	Protein Efficiency	1.6 (1)
High-Bypass	2.0	Protein Efficiency	2.1 (2)

Variable Response with Rumen Protected Met + Lys

- 1. <u>Piepenbrink et al. (1996):</u> No Improvement in Milk & Protein Yield.
- 2. Armentano et al. (1997): Improved Protein Yield (60g/d) w/ Met, Not Lys.
- 3. <u>Dinn et al. (1998):</u> Milk & Protein on 15.3% CP + RP-Met & Lys = 16.7% CP (< 18.3% CP).

Approaches to Reducing Dietary CP

- 1. Accurate Tracking of Dietary CP; Feed Less.
- 2. Reduce NPN in Hay-Crop Silage.
- Feed Hay Rather Than Silage.
- 4. Dilute Hay-Crop Silage with Corn Silage.
- 5. Feed More Concentrate (as Much as Possible?).
- Match Fermentable Energy & RDP.
- 7. Feed By-Pass Protein & Essential AA.
- 8. Use "N-Free" AA (MHA; BC-VFA).

Liquid MHA (Alimet; "N-Free" AA)

- 1. Koenig et al. (1999): 50% MHA Escaped.
- 2. Stephenson et al. (1990): Small Wool Growth Response with MHA (20% of Abomasal MHA).
- 3. Schwab (2003): No Increase in Plasma Met with MHA.

Same Milk for Less Crude Protein

- 1. Increase Profits, Reduce Pollution, Better Manure
- 2. "Safety Margin" Problem.
- 3. Know How Much Protein is Being Fed.
- 4. Reduce NPN in Alfalfa Forage (Limited Options).
- 5. Feed the Bugs Energy to "Mop Up" NPN.
- 6. How Low Can We go & Maintain Production?

